Hierarchical Manifold Clustering on Diffusion Maps for Connectomics (MIT 18.S096 final project)
نویسنده
چکیده
In this paper, we introduce a novel algorithm for segmentation of imperfect boundary probability maps (BPM) in connectomics. Our algorithm can be a considered as an extension of spectral clustering. Instead of clustering the diffusion maps with traditional clustering algorithms, we learn the manifold and compute an estimate of the minimum normalized cut. We proceed by divide and conquer. We also introduce a novel criterion for determining if further splits are necessary in a component based on it’s topological properties. Our algorithm complements the currently popular agglomeration approaches in connectomics, which overlook the geometrical aspects of this segmentation problem.
منابع مشابه
18.S096: Graphs, Diffusion Maps, and Semi-supervised Learning
These are lecture notes not in final form and will be continuously edited and/or corrected (as I am sure it contains many typos). Please let me know if you find any typo/mistake. Also, I am posting short descriptions of these notes (together with the open problems) on my Blog, see [Ban15]. Graphs will be one of the main objects of study through these lectures, it is time to introduce them. Grap...
متن کاملManifold Learning and Dimensionality Reduction with Diffusion Maps
This report gives an introduction to diffusion maps, some of their underlying theory, as well as their applications in spectral clustering. First, the shortcomings of linear methods such as PCA are shown to motivate the use of graph-based methods. We then explain Locally Linear Embedding [9], Isomap [11] and Laplacian eigenmaps [1], before we give details on diffusion maps and anisotropic diffu...
متن کاملUnsupervised Shape Clustering using Diffusion Maps
The quotient space of all smooth and connected curves represented by a fixed number of boundary points is a finite-dimensional Riemannian manifold, also known as a shape manifold. This makes the preservation of locality a critically important issue when reducing the dimensionality of shapes on the manifold. We present a completely unsupervised clustering algorithm employing diffusion maps for l...
متن کاملHierarchical Clustering Via Localized Diffusion Folders
We present a short introduction to an hierarchical clustering method of high-dimensional data via localized
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1607.06318 شماره
صفحات -
تاریخ انتشار 2016