Hierarchical Manifold Clustering on Diffusion Maps for Connectomics (MIT 18.S096 final project)

نویسنده

  • Gergely Ódor
چکیده

In this paper, we introduce a novel algorithm for segmentation of imperfect boundary probability maps (BPM) in connectomics. Our algorithm can be a considered as an extension of spectral clustering. Instead of clustering the diffusion maps with traditional clustering algorithms, we learn the manifold and compute an estimate of the minimum normalized cut. We proceed by divide and conquer. We also introduce a novel criterion for determining if further splits are necessary in a component based on it’s topological properties. Our algorithm complements the currently popular agglomeration approaches in connectomics, which overlook the geometrical aspects of this segmentation problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

18.S096: Graphs, Diffusion Maps, and Semi-supervised Learning

These are lecture notes not in final form and will be continuously edited and/or corrected (as I am sure it contains many typos). Please let me know if you find any typo/mistake. Also, I am posting short descriptions of these notes (together with the open problems) on my Blog, see [Ban15]. Graphs will be one of the main objects of study through these lectures, it is time to introduce them. Grap...

متن کامل

Manifold Learning and Dimensionality Reduction with Diffusion Maps

This report gives an introduction to diffusion maps, some of their underlying theory, as well as their applications in spectral clustering. First, the shortcomings of linear methods such as PCA are shown to motivate the use of graph-based methods. We then explain Locally Linear Embedding [9], Isomap [11] and Laplacian eigenmaps [1], before we give details on diffusion maps and anisotropic diffu...

متن کامل

Unsupervised Shape Clustering using Diffusion Maps

The quotient space of all smooth and connected curves represented by a fixed number of boundary points is a finite-dimensional Riemannian manifold, also known as a shape manifold. This makes the preservation of locality a critically important issue when reducing the dimensionality of shapes on the manifold. We present a completely unsupervised clustering algorithm employing diffusion maps for l...

متن کامل

Hierarchical Clustering Via Localized Diffusion Folders

We present a short introduction to an hierarchical clustering method of high-dimensional data via localized

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1607.06318  شماره 

صفحات  -

تاریخ انتشار 2016